20 research outputs found

    Material phase detection using capacitance tomography

    Get PDF
    Includes bibliographical references.The design of sensor electronics for a tomographic imaging system based on electrical capacitance sensors is of interest in many different engineering applications. This can be especially beneficial in industrial two-component flow systems where capacitance tomography may provide information on how the two components are distributed, and the overall mass flow rate. Conventional flowmeters are often unsuitable for accurate measurements in two phase flows. This is particularly prevalent in cases where the component distribution is varying in space and time. Computerised tomographic methods used in medical imaging, can provide a useful means for obtaining a1most instantaneous information on the distribution of components in a cross section of a pipe. This aspect is exploited in this work leading to the possibility of a more accurate and relevant measurement. Several different flow imaging techniques have been developed based on neutron, x-ray, capacitance and ultrasound techniques. This work firstly reviews the recent developments in tomographic systems with particular reference to measurements in industrial processes. The principle flow sensing methods are summarized including cross correlation techniques and their applications. Application methods of artificial intelligence for image reconstruction are also reviewed as these techniques will be required in future developments

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    Predicting climate change effects on agriculture from ecological niche modeling: who profits, who loses?

    No full text
    The susceptibility of agriculture to changing environmental conditions is arguably the most dangerous short-term consequence of climate change, and predictions on the geography of changes will be useful for implementing mitigation strategies. Ecological niche modeling (ENM) is a technique used to relate presence records of species to environmental variables. By extrapolation, ENM maps the suitability of a landscape for the species in question. Recently, ENM was successfully applied to predict the geographic distribution of agriculture. Using climate and soil conditions as predictor variables, agricultural suitability was mapped across the Old World. Here, I present analogous ENM-based maps of the suitability for agriculture under climate change scenarios for the year 2050. Deviations of predicted scenarios from a current conditions model were analyzed by (1) comparing relative average change across regions, and (2) by relating country-wide changes to the data indicative of the wealth of nations. The findings indicate that different regions vary considerably in whether they win or lose in agricultural suitability, even if average change across the entire study region is small. A positive relationship between the wealth of nations and change in agriculture conditions was found, but variability around this trend was high. Parts of Africa, Europe and southern and eastern Asia were predicted to be particularly negatively affected, while north-eastern Europe, among other regions, can expect more favorable conditions for agriculture. The results are presented as an independent “second opinion” to previously published, more complex forecasts on agricultural productivity and food supply variability due to climatic change, which were based on fitting environmental variables to yield statistics
    corecore